Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 23(24)2022 Dec 12.
Article in English | MEDLINE | ID: covidwho-2155139

ABSTRACT

A large-scale Escherichia coli (E. coli) production of the receptor-binding domain (RBD) of the SARS-CoV-2 could yield a versatile and low-cost antigen for a subunit vaccine. Appropriately folded antigens can potentially elicit the production of neutralizing antisera providing immune protection against the virus. However, E. coli expression using a standard protocol produces RBDs with aberrant disulfide bonds among the RBD's eight cysteines resulting in the expression of insoluble and non-native RBDs. Here, we evaluate whether E. coli expressing RBD can be used as an antigen candidate for a subunit vaccine. The expressed RBD exhibited native-like structural and biophysical properties as demonstrated by analytical RP-HPLC, circular dichroism, fluorescence, and light scattering. In addition, our E. coli expressed RBD binds to hACE2, the host cell's receptor, with a binding constant of 7.9 × 10-9 M, as indicated by biolayer interferometry analysis. Our E. coli-produced RBD elicited a high IgG titer in Jcl:ICR mice, and the RBD antisera inhibited viral growth, as demonstrated by a pseudovirus-based neutralization assay. Moreover, the increased antibody level was sustained for over 15 weeks after immunization, and a high percentage of effector and central memory T cells were generated. Overall, these results show that E. coli-expressed RBDs can elicit the production of neutralizing antisera and could potentially serve as an antigen for developing an anti-SARS-CoV-2 subunit vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Mice , SARS-CoV-2 , Escherichia coli , Mice, Inbred ICR , COVID-19 Vaccines , Vaccines, Subunit , Antibodies, Neutralizing , Antibodies, Viral , Mice, Inbred BALB C
2.
Biochem Biophys Res Commun ; 570: 21-25, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1309162

ABSTRACT

Natto, a traditional Japanese fermented soybean food, is well known to be nutritious and beneficial for health. In this study, we examined whether natto impairs infection by viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as bovine herpesvirus 1 (BHV-1). Interestingly, our results show that both SARS-CoV-2 and BHV-1 treated with a natto extract were fully inhibited infection to the cells. We also found that the glycoprotein D of BHV-1 was shown to be degraded by Western blot analysis and that a recombinant SARS-CoV-2 receptor-binding domain (RBD) was proteolytically degraded when incubated with the natto extract. In addition, RBD protein carrying a point mutation (UK variant N501Y) was also degraded by the natto extract. When the natto extract was heated at 100 °C for 10 min, the ability of both SARS-CoV-2 and BHV-1 to infect to the cells was restored. Consistent with the results of the heat inactivation, a serine protease inhibitor inhibited anti-BHV-1 activity caused by the natto extract. Thus, our findings provide the first evidence that the natto extract contains a protease(s) that inhibits viral infection through the proteolysis of the viral proteins.


Subject(s)
COVID-19 Drug Treatment , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Soy Foods , Soybeans/chemistry , Animals , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Cattle , Cells, Cultured , Chlorocebus aethiops , Herpesviridae Infections/drug therapy , Herpesviridae Infections/metabolism , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Herpesvirus 1, Bovine/drug effects , Herpesvirus 1, Bovine/isolation & purification , Herpesvirus 1, Bovine/pathogenicity , Humans , Plant Extracts/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism
3.
J Vet Med Sci ; 82(3): 387-393, 2020 Mar 24.
Article in English | MEDLINE | ID: covidwho-11655

ABSTRACT

Adenosine 5'-triphosphate (ATP), the major energy currency of the cell, is involved in many cellular processes, including the viral life cycle, and can be used as an indicator of early signs of cytopathic effect (CPE). In this study, we demonstrated that CPE can be analyzed using an FRET-based ATP probe named ATP indicator based on Epsilon subunit for Analytical Measurements (ATeam). The results revealed that as early as 3 hr, the virus infected cells showed a significantly different Venus/cyan fluorescent protein (CFP) ratio compared to the mock-infected cells. The ATeam technology is therefore useful to determine the early signs of ATP-based CPE as early as 3 hr without morphology-based CPE by light microscopy, and enables high throughput determination of the presence of microorganisms in neglected samples stored in laboratories.


Subject(s)
Adenosine Triphosphate/analysis , Cytopathogenic Effect, Viral , Fluorescence Resonance Energy Transfer/methods , Viruses/metabolism , Animals , Biosensing Techniques , Cell Line , Green Fluorescent Proteins , Humans , Mammals , Microscopy, Fluorescence , Virus Diseases
SELECTION OF CITATIONS
SEARCH DETAIL